

		Reference	FT MTA English
	TECHNICAL DATA SHEET	Date	09/04/12
FIXING SYSTEMS	TECHNICAL DATA SHEET	Update	9 😵
FIXING STSTEMS		Page	1 of 6
Product name: MTA Anchor	Code	AM, MI, AMHD	

1.- CHARACTERISTICS

- Metal anchor with functioning principle of expansion and installation by controlled torque.
- Male thread.
- For non-cracked concrete.
- Easy to install.
- For medium-high loads.
- Manufactured in zinc plated steel, stainless steel A2 (equivalent to AISI 303 / 304), and hot-dip galvanized (EN ISO 1461) with stainless steel A4 clip.
- Possible to install by pre-drilling or by using the holes on the material to be fixed as template.
- Different lenghts and diameters available for different types of installations.
- Two different installation depths at diameters M8, M10 & M12 to facilitate the installation of both thicker and thinner materials.

МАГАЗИН: гр. Варна; ул. "Струга" № 23, тел.: 052/64 30 30; факс: 052/64 30 35, моб.: +359 88 925 2963, email: info@bashmajstora.com СЕРВИЗ: гр. Варна; ул. "Струга" № 25, тел.: 052/64 30 30; факс: 052/64 30 35, моб.: +359 88 806 2122, email: service@ bashmajstora.com

www.bashmaistora.bg

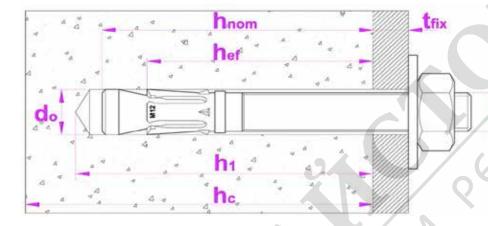
NDEX	TECHNICAL DATA SHEET	Reference	FT MTA English
		Date	09/04/12
FIXING SYSTEMS	TECHNICAL DATA SHEET	Update	9
FIXING STSTEMS		Page	2 of 6
Product name: MTA Anchor	Code	AM, MI, AMHD	

2.- MATERIALS

-								
	ITEM	COMPONENT	ZINC PLATED	STAINLESS STEEL A2	HOT-DIP GALVANIZED WITH SS A4 CLIP			
	1	WEDGE BOLT	Cold-stamped carbon steel, zinc plated ≥ 5 µm ISO 4042 A2J	Stainless steel, grade A2	Cold-stamped carbon stee, hot-dip galvanized ≥ 20 µm EN ISO 1461	6		
	2	WASHER	DIN 125 or DIN 9021 zinc plated ≥ 5µm ISO 4042 A2J	DIN 125 or DIN 9021 stainless steel, grade A2	DIN 125 hot-dip galvanized ≥ 20 µm EN ISO 1461	•		
	3	NUT	DIN 934 class 8 ISO 898-1, zinc plated ≥ 5 µm ISO 4042 A2J	DIN 934 stainless steel, grade A2	DIN 934 class 8 ISO 898-1 hot-dip galvanized ≥ 20 µm EN ISO 1461			
	4	CLIP	Steel DC03 EN101239 o SPCD JIS G3141, zinc plated ≥ 5 µm ISO 4042 A2J	Stainless steel, grade A2	Stainless steel, grade A4			
3	3 DIMENSIONS							

3.- DIMENSIONS

	METRIC		M6	M8	M10	M12	M14	M16	M20	M24
	Zinc plated		AM06XXX	AM08XXX	AM10XXX	AM12XXX	AM14XXX	AM16XXX	AM20XXX	AM24XXX
Code	Stainless steel A2		MI06XXX	MI08XXX	MI10XXX	MI12XXX		MI16XX	MI20XXX	
	Hot-dip galvanized			AMHD08XXX	AMHD10XXX	AMHD12XXX		AMHD16XXX	AMHD20XXX	
d _p	axis diameter	[mm]	6	8	10	12	14	16	20	24
I _{mir}	h: zinc plated axis length	[mm]	60-180	60-155	70-230	90-250	120-250	125-280	170-270	180-260
I _{ma}	x: stainless steel axis length	[mm]	60-180	75-115	70-150	90-140		125-170	170-220	
I _{mir}	h: hot-dip galvanized axis length	[mm]	/	60-155	70-210	90-250		125-220	170-270	
d ₃ :	: hammering diameter	[mm]	4	6	7.5	9	10.5	12	16	20
d ₂ :	: washer diameter	[mm]	12	16	20	24	28	30	37	44
s ₂ :	washer thickness	[mm]	1.6	1.6	2	2.5	2.5	3	3	4
s _w	; nut key	[mm]	10	13	17	19	22	24	30	36

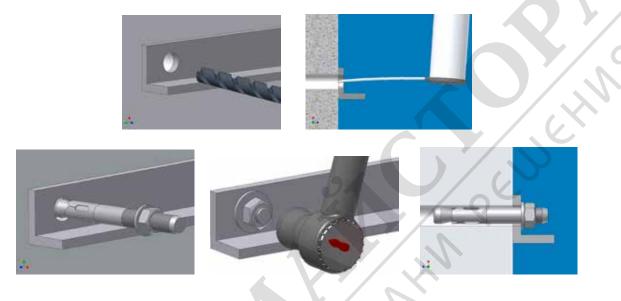


dw

E	TECHNICAL DATA SHEET	Reference	FT MTA English
		Date	09/04/12
	TECHNICAL DATA SHEET	Update	9
CIVING STOLEMS		Page	3 of 6
Product name: MTA Ancho	r	Code	AM, MI, AMHD

4.- INSTALLATION DATA

	METRIC		M6	M8	M10	M12	M14	M16	M20	M24
	Steel zinc plated		AM06XXX	AM08XXX	AM10XXX	AM12XXX	AM14XXX	AM16XXX	AM20XXX	AM24XXX
Code	Stainless steel A2		MI06XXX	MI08XXX	MI10XXX	MI12XXX		MI16XX	MI20XXX	
0	Hot-dip galvanized			AMHD08XXX	AMHD10XXX	AMHD12XXX		AMHD16XXX	AMHD20XXX	
d ₀ :	drill diameter	[mm]	6	8	10	12	14	16	20	24
T _{in}	s: torque	[Nm]	7	20	35	60	90	120	240	350
d _w	: fixture diameter	[mm]	7	9	12	14	16	18	22	26
ſ	h1: minimum drill depth	[mm]	55	65	75	85	100	110	135	160
depth	h _{nom} : embedment depth	[mm]	49.5	59.5	66.5	77	91	103.5	125	150
	h _{ef} : min. effective depth	[mm]	40	48	55	65	75	84	103	123
d emb.	h _c : base material min. thck.	[mm]	100	100	110	130	150	168	206	250
Standard	t _{fix} : max. fixture thickness	[mm]	L - 58	L - 70	L - 80	L - 92	L - 108	L - 122	L - 147	L - 176
Stan	s _{cr} : critical spacing	[mm]	120	144	165	195	225	252	309	370
<u> </u>	C _{cr} : critical edge distance	[mm]	60	72	83	98	113	126	155	185
th	h ₁ : minimum drill depth	[mm]		50	60	70				
depth	h _{nom} : embedment depth	[mm]		46.5	53.5	62				
b. d	h _{ef} : min. effective depth	[mm]		35	42	50				
l emb.	h _c : base material min. thck.	[mm]		100	100	100				
Iced	t_{fix} : max. fixture thickness	[mm]		L-57	L-67	L-77				
Reduced	s _{cr} : critical spacing	[mm]		105	126	150				
Ľ	c _{cr} : critical edge distance	[mm]		53	63	75				
Sm	_{in} : minimum spacing	[mm]	50	65	70	85	100	110	135	160
Cm	_{in} : min. edge distance	[mm]	50	65	70	85	100	110	135	160


МАГАЗИН: гр. Варна; ул. "Струга" № 23, тел.: 052/64 30 30; факс: 052/64 30 35, моб.: +359 88 925 2963, email: info@bashmajstora.com СЕРВИЗ: гр. Варна; ул. "Струга" № 25, тел.: 052/64 30 30; факс: 052/64 30 35, моб.: +359 88 806 2122, email: service@ bashmajstora.com

(T)		Reference	FT MTA English
INDEX	TECHNICAL DATA SHEET	Date	09/04/12
FIXING SYSTEMS	TECHNICAL DATA SHEET	Update	9
		Page	4 of 6
Product name: MTA Anchor	r	Code	AM, MI, AMHD

5.- HOW TO INSTALL

- Before installation, check the concrete's strength in order to make sure its class is not lower than required and to which the characteristic loads apply.
- The concrete base must be compact and porosity insignificant.
- Installation temperature range for base material: -5 / + 40 °C (80 °C for a short period of time).
- Minimum installation depth values must always be respected: for anchors' depth, for anchor-to-anchor distances and for anchor-to-edge distances.
- Drilling must be performed by respecting the specified minimum depth and diameter, perpendicular to the base material's surface. The holes on the material to be fixed may be used as templates.
- When drilling near any reinforcement areas, special care must be taken to avoid damaging them. If drilling is aborted because a reinforcement area has been encountered, it is advisable to drill a new hole at a minimum distance of at least twice the aborted drill hole. This advisable distance may be reduced, as long as the aborted hole is previously filled up with high-resistant mortar. In any case, if the aborted hole is not filled up with mortar, no shear or oblique tension load in the direction of load application will be tolerated at a shorter distance than the installation depth value h_{nom}.
- It is necessary to clean the holes thoroughly free of dust and debris.
- When temperature is below 0°C, make sure water does not seep into the hole, as this fact could cause subsequent cracks on the concrete, due to ice pressure.
- Introduce the anchor through the material to be fixed into the hole up to the embedment depth, according to the values on the table. It is possible to use a hammer to ensure the required depth. Do not apply any intermediate layer between the meterial to be fixed and the washer, such as sealing products. Apply the specified torque with a torque wrench.
- In the case the holes on the material to be fixed have a bigger diameter than required, it is necessary to insert a thicker washer and of a bigger diameter. But please, note that this procedure does not ensure a correct distribution of shear

(TD)		Reference	FT MTA English
INDEX	TECHNICAL DATA SHEET	Date	09/04/12
FIXING SYSTEMS	TECHNICAL DATA SHEET	Update	9
FIXING STSTEMS		Page	5 of 6
Product name: MTA Anchor		Code	AM, MI, AMHD

loads amongst all the anchors of a same group, and this shear load is applied only to the anchors with a correct diameter on the material to be fixed.

6.- RECOMMENDED RESISTANCES

6.1.- Recommended resistances* in concrete C20/25** for an isolated anchor (without spacing and edge distances effects) are as per this table:

		METRIC		M6	M 8	M10	M12	M14	M16	M20	M24
	Со	de		AM06XXX	AM08XXX	AM10XXX	AM12XXX	AM14XXX	AM16XXX	AM20XXX	AM24XXX
hot-dip steel	Standard	$N_{R,k}$ tension	[KN]	<u>7.7</u>	12.0	16.0	25.0	30.0	35.0	50.0	65.3
Zinc plated & hot-dip galvanized steel		$V_{\text{R},\text{K}}$ shear	[KN]	<u>5.1</u>	<u>9.3</u>	<u>14.7</u>	<u>20.6</u>	<u>28.1</u>	<u>38.4</u>	<u>56.3</u>	<u>81.2</u>
Zinc pla galva	loed	$N_{R,k}$ tension	[KN]		9.0	12.0	16.0	-			
	Reduced	$V_{R,K}$ shear	[KN]		10.4	13.7	17.8		·		
: A2	Code			MI06XXX	MI08XXX	MI10XXX	MI12XXX	1-1	MI16XXX	MI20XXX	
grade	dard	$N_{\text{R},k}$ tension	[KN]	<u>10.1</u>	12.0	16.0	25.0		35.0	50.0	
steel,	Standard	$V_{\text{R},\text{K}}$ shear	[KN]	<u>6.0</u>	<u>10.9</u>	<u>17.4</u>	<u>25.2</u>		<u>47.1</u>	<u>73.5</u>	
Stainless steel,	led	$N_{R,k}$ tension	[KN]		9.0	12.0	16.0				
Stai	Redued	V _{R,K} shear	[KN]	_	10.4	13.7	17.8				

1 KN ≈ 100 Kg

(*) The recommended resistance stands for values with a 95% probability to be reached at a test. It depends on the number of tests performed, average value and value alterations. It includes a safety coefficient of 3.

(**) Concrete C20/25 as per ENV206: characteristic resistance for an age \geq 28 days:

- Cylindrical simple test ø 150 mm. x 300 height \geq 200 N/mm2
- Cubic sample test 150 mm. side ≥ 250 N/mm2

<u>Underlined and cursive</u> values correspond to steel failure.

The recommended resistance for tension and shear must be considered separately.

		RESISTANCE SAFE	TY COEFFICIENTS	LOAD INCREASING
SAFETY	COEFFICIENT	CONCRETE FAILURE	STEEL FAILURE	SAFETY COEFFICIENT
Zinc platted & Hot-dip	Tension	1.80	<u>1.40</u>	1.4
galvanized steel	Shear	1.50	<u>1.25</u>	

6.2.- Recommended safety factors

	TECHNICAL DATA SHEET		Referen	се	FT MTA English
			Date		09/04/12
FIXING SYSTEMS			Update		9
			Page		6 of 6 📀
Product name: MTA Anchor	Code		AM, MI, AMHD		

Stainless	Tension	1.80	<u>1.68</u>	
steel A2	Shear	1.50	<u>1.52</u>	

6.3.- Calculation example

Fixing a load tension of 2.000 kg

2.000 kg ≈ 20 KNIncreasing coefficient for loads:1.4Using two MTA M14 anchors, standard embedment depth1.4Pull load recommended resistance for MTA M14 anchor:30.0 KNConcrete failure1.8

Check: the increased load must be lower than reduced resistance 20 KN x 1.4 ≤ 2 x 30.0 KN / 1.8

The anchors' studs must be at a minimum distance of 225 mm, and must also keep a minimum distance of 113 mm to any edges.

7.- EXAMPLES OF USE

